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Abstract 

 

Most commonly used statistical methods in analyzing and interpreting clinical trial data are based 

on a specific distribution of the data, such as normal, binomial and exponential models. The 

alternative is to choose nonparametric methods based on rank, but with the disadvantage that for small 

size samples, they may give erroneous results. In this article, we refer an accurate statistical method 

based on computational simulations in order to characterize and compare as efficiently as possible 

clinical trial studies having few values. The bootstrap technique is a statistical method that does not 

depend on any data distribution hypothesis and can be considered adequate to estimate some essential 

parameters in data analysis by different types of bootstrap confidence intervals. The effect-size 

statistics and its confidence intervals are also presented, being useful when we compare group means. 
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Introduction 

 

Computational statistics along with statistical software packages can describe and shape any 

biomedical phenomena using bootstrap replication methods [1]. With the help of these bootstrap 

techniques, it is possible to estimate using confidence intervals any statistical parameter belonging to 

a statistical population which does not respect the hypotheses of classical inferential statistics. 

Challenges occur when data distribution is uncertain and fails to be approximated with a normal 

one and, last but not least, when we deal with insufficient number of data, thus not being able to 

obtain a known statistical distribution of the data at a reasonable risk. The hypotheses of inferential 

statistics require a selection volume of at least 30 values, which disagrees with the ethical code and 

the economic conditions of animal experiment studies [2]. Thus, the research on the number of 

animals necessary to obtain credible results is pervasive [3] but, also, the statistical approach must be 

modern, based on computational simulations [4]. 

The bootstrapping technique, also called resampling, is based on random replications having 

sample extractions returns (that is, the same individual may be encountered several times in the 

bootstrap set and also in any other bootstrap sample), from the dataset under analysis, replications 

having the same size as the original dataset. This method assumes that the original dataset is randomly 

extracted from an infinite population and is representative of it. 

This bootstrap resampling technique is also used in bioequivalence studies of formulations to 

obtain a confidence interval for the difference of two treatments, one tested and one reference [5]. 

This article is divided into four sections. In the first section, we analyze the need to use 

computational techniques when the hypotheses of inferential parametric statistics are not 

accomplished. The second section describes several models of bootstrap confidence intervals and the 

assumptions they imply. In the next section, we amplify the new statistics approach by exposing the 
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effect size measures both under normality conditions and when this assumption is not met. The last 

section is reserved for conclusions. 

 

Confidence intervals 

 

In this section, we describe by comparison several bootstrap confidence intervals that can be built 

computationally using software R. 

The first bootstrap interval is the 95% normal confidence interval which is used in classical 

inferential statistics. Except for the standard error that is estimated based on a replicated bootstrap 

distribution, all the items of the study remain unchanged, the known quantile being 1.96. This type 

of normal confidence interval can be used if the statistical bootstrap distribution is approximately 

normal and symmetric, and the sample estimator is unbiased. 

The second bootstrap presented interval is the 95% percentile confidence interval. This is a 

confidence interval that uses the lower limits of 2.5% and upper 97.5%, and not only. These 

percentiles correspond to the confidence interval of 95%, otherwise, the percentages vary. This type 

of interval can be used if the replicated statistical bootstrap distribution is approximately symmetric, 

and the parameter sample estimator is unbiased. 

The basic confidence interval is based on a method that corrects the bootstrap distribution 

asymmetry and recalculates the upper and lower margins to identify the desired 95% confidence 

interval. This interval is based only on the assumption of an unbiased sample estimator and no longer 

implies any assumption for the replicated bootstrap distribution. 

The studentized confidence interval is constructed by generating for each replicated sample the 

estimated parameter (mean for example) and associated standard error. Thus, the replicated statistic 

of the t-student form is constructed, and for this, we apply the bootstrap percentile confidence interval 

with the 0.025 and 0.975 quantiles. This confidence interval is based only on the assumption that the 

standard error of the estimated parameter can be computationally generated. 

The last bootstrap confidence interval, Bias-Corrected and Accelerated Interval, BCA, can be built 

without any prior assumption, being the most commonly used bootstrap interval. The construction 

method for this interval corrects the bootstrap replicated distribution asymmetry and the uncertain 

variance of each replicated sample and uses the 0.025 and 0.975 quantiles. 

All methods of constructing bootstrap confidence intervals allow the use of non-normal and 

asymmetric distributions. The sample size is a factor that can contribute to higher accuracy of results 

and much narrower confidence intervals in order to estimate as accurately and efficiently as possible 

the unknown parameters in the research. 

 

Effect size 

 

The results of testing statistical hypotheses are inferior in information because of the dichotomic 

response by which a hypothesis is accepted or rejected. Confidence intervals offer more information, 

but the answers required in a particular research to accept or not certain treatments can be offered 

along with the magnitude of differences or similarities between them [6]. 

In statistical studies, there are many measures used to quantify the magnitude of differences. We 

present two of the most widely used and robust statistical effect sizes. One of the most used statistical 

measures that quantify the difference between two datasets is Cohen effect size, denoted by d, 

recommended only in the case of two normally distributed datasets having homogeneity of variances 

[7]. If normality and homogeneity assumptions are not verified, other effect sizes may be applied, but 

the one proposed by Hogarty and Kromrey, denoted by 𝑑𝑟, and developed by Algina is the one that 

offers the same metrics as Cohen effect size being robust [10]. 
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Cohen Effect size for mean difference 

In cases where we want to compare two treatment groups using Cohen effect size index, the 

assumption of normality for the empirical distributions involved should be respected [7]. This is 

calculated on the same principle as the t-student statistic, exception being the sample mean involved 

and the standard deviation that can be estimated by the bootstrap method. Cohen effect size index is 

given by 

𝑑 =
𝑥̅𝑇 − 𝑥̅𝐶

𝑠𝑝
 

where 𝑥̅𝑇 and 𝑥̅𝐶 are the estimated mean of two groups, and the pooled variance is given by 

𝑠𝑝 = √
(𝑛1 − 1)𝑠1

2 + (𝑛2 − 1)𝑠2
2

𝑛1 + 𝑛2 − 2
 

𝑛1, 𝑛2 are the sizes of two groups and 𝑠1
2,  𝑠2

2 the estimated variances, respectively. 

The Cohen value d can describe differences in percentages between T (treatment) and C (control) 

treatments. If the index is 0, then 50% of control group C values are below the mean of the T group. 

It is considered that we have a small effect between treatments if d <0.2, a moderate effect if d 

<0.5, and otherwise the effect is assumed to be large. 

The Cohen d value is superior to the p-value of a statistical hypothesis, but it is also important to 

calculate an afferent confidence interval for greater accuracy, especially when the sample size is 

small. If 95% of confidence intervals contain the value of zero, then we have a non-significant 

difference between the two treatments [8]. 

The confidence interval proposed by Hedge and Olkin in 2014 assume normality and homogeneity 

of data. This confidence interval is (𝑑 − 1.96𝜎(𝑑), 𝑑 + 1.96𝜎(𝑑)), where 𝜎(𝑑) represents the Cohen 

standard deviation given by 

𝜎(𝑑) = √
𝑛1 + 𝑛2

𝑛1 ∗ 𝑛2
+

𝑑2

2(𝑛1 + 𝑛2)
 

and 𝑛1, 𝑛2 are the sizes of two groups [9]. 

 

Effect size for non-normal data 

For situations where assumptions of normality and homogeneity are not meet, an estimator of 

Cohen’s effect size is used [11]. Applying the same construction idea as in the case of Cohen’s index, 

the means of the two data sets are replaced with 20% truncated means 𝑦̅2 si 𝑦̅1 and the standard 

deviation is replaced with a 20% Winsorized variance 𝑠𝑊
2 . That is  

𝑑𝑟 = 0.642 (
𝑦̅2 − 𝑦̅1

𝑠𝑊
) 

where 

𝑠𝑊 = √
(𝑛1 − 1)𝑠𝑊1

2 + (𝑛2 − 1)𝑠𝑊2

2

𝑛1 + 𝑛2 − 2
 

𝑛1, 𝑛2 are the sizes of two groups and 𝑠𝑊1

2 , 𝑠𝑊1

2  are 20% Winsorized variances. These variances 

are calculated as a common variance, but for modified datasets as follow. The data are ordered, 10% 

of it is deducted from the smallest values and 10% is deducted from the highest values and then 

replaced with the closest neighbor value. The scaling constant of 0.642 is required to reduce the 

influence of eliminating 20% of the initial dataset values. 

In this situation, a bootstrap confidence interval is preferable, given that parametric hypothesis of 

normality is unlikely to be true. For each bootstrap sample, a bootstrap value of the effect size is 

determined, and so we get an ordered dataset by which we can choose one of the bootstrap ranges 

proposed in the first section. 
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The effect size is a value that gives information about the magnitude of the differences between 

treatments, being a dimensionless measure, property that reduces discrepancies between the different 

measurement units that may occur between different treatments. Also, the magnitude of the effect 

also offers the opportunity to embrace more independent research into a meta-analysis that provides 

overall more general and complex conclusions [6]. 

 

Conclusions 

 

Parametric model testing such as t-test, ANOVA, or regression, is based on a few simple 

assumptions: independence of variables, normality of sample distributions or uniformity of residues. 

When these requirements fail, we can either use rank tests or, more advanced, bootstrap 

computational procedures. Estimating confidence intervals and effect size based on bootstrap 

principles are new statistics that can be integrated into a meta-analysis study which allows us to drawn 

complex conclusions on the impact of various drugs on the population. 
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